The Oil Layer Recognition Based on Multi-kernel Function Relevance Vector Machines
نویسندگان
چکیده
In the oil layer recognition, Relevance vector machines (RVM) have a good effect. But the single kernel function RVM has some limitations, a kind of multi-kernel function RVM based on particle swarm optimization (PSO) is proposed, which includes the model parameter estimation, model optimization on multi-kernel function RVM, PSO-based training, and recognition. The results of simulation experiment for a typical recognition dataset show that its effect is superior to that of classical RVM and PSO-based single kernel function RVM, and its actual application for oil layer recognition in well logging indicates that the recognition results are completely consistent with the conclusions of oil trial, and it has the high recognition accuracy and the good recognition effect.
منابع مشابه
Face Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملSeparating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir
The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...
متن کاملPredicting cardiac arrhythmia on ECG signal using an ensemble of optimal multicore support vector machines
The use of artificial intelligence in the process of diagnosing heart disease has been considered by researchers for many years. In this paper, an efficient method for selecting appropriate features extracted from electrocardiogram (ECG) signals, based on a genetic algorithm for use in an ensemble multi-kernel support vector machine classifiers, each of which is based on an optimized genetic al...
متن کاملDiscriminative Gaussian Mixture Models: A Comparison with Kernel Classifiers
We show that a classifier based on Gaussian mixture models (GMM) can be trained discriminatively to improve accuracy. We describe a training procedure based on the extended Baum-Welch algorithm used in speech recognition. We also compare the accuracy and degree of sparsity of the new discriminative GMM classifier with those of generative GMM classifiers, and of kernel classifiers, such as suppo...
متن کاملSupport vector machines/relevance vector machine for remote sensing classification: A review
Kernel-based machine learning algorithms are based on mapping data from the original input feature space to a kernel feature space of higher dimensionality to solve a linear problem in that space. Over the last decade, kernel based classification and regression approaches such as support vector machines have widely been used in remote sensing as well as in various civil engineering applications...
متن کامل